OEcotextiles

Indulgent yet responsible fabrics

Fabric and your carbon footprint

O Ecotextiles (and Two Sisters Ecotextiles)

In considering fabric for your sofa, let’s be altruistic and look at the impact textile production has on global climate change.  (I only use the term altruistic  because many of us don’t equate climate change with our own lives, though there have been several interesting studies of just how the changes will impact us directly, like the one in USA Today that explains that wet regions will be wetter, causing flash flooding;  dry regions will get drier, resulting in drought. And  …  a heat wave that used to occur once every 100 years now happens every five years (1)).

Bill Schorr

Bill Schorr


Although most of the current focus on lightening our carbon footprint revolves around transportation and heating issues, the modest little fabric all around you turns out to be from an industry with a gigantic carbon footprint. The textile industry, according to the U.S. Energy Information Administration, is the 5th largest contributor to CO2 emissions in the United States, after primary metals, nonmetallic mineral products, petroleum and chemicals.[2]  And the US textile industry is small potatoes when compared with some other countries I could mention.  Last week we explained that a typical “quality” sofa  uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric – in one sofa.

The textile industry is huge, and it is a huge producer of greenhouse gasses.  Today’s textile industry is one of the largest sources of greenhouse gasses (GHG’s) on Earth, due to its huge size.[3] In 2008,  annual global textile production was estimated at  60 billion kilograms (KG) of fabric.  The estimated energy and water needed to produce that amount of fabric boggles the mind:

  • 1,074 billion kWh of  electricity  or 132 million metric tons of coal and
  • between 6 – 9  trillion liters of water[4]

Fabrics are the elephant in the room.  They’re all around us  but no one is thinking about them.  We simply overlook fabrics, maybe because they are almost always used as a component in a final product that seems rather innocuous:  sheets, blankets, sofas, curtains, and of course clothing.  Textiles, including clothing,  accounted for about one ton of the 19.8 tons of total CO2 emissions produced by each person in the U.S. in 2006. [5] By contrast, a person in Haiti produced a total of only 0.21 tons of total carbon emissions in 2006.[6]

Your textile choices do make a difference, so it’s vitally important to look beyond thread counts, color and abrasion results.

How do you evaluate the carbon footprint in any fabric?  Look at the “embodied energy’ in the fabric – that is, all of the energy used at each step of the process needed to create that fabric.   Not an easy thing to do!  To estimate the embodied energy in any fabric it’s necessary to add the energy required in two separate fabric production steps:

(1)  Find out what the fabric is made from, because the type of fiber tells you a lot about the energy needed to make the fibers used in the yarn.  The carbon footprint of various fibers varies a lot, so start with the energy required to produce the fiber.

(2) Next, add the energy used to weave those yarns into fabric.  Once any material becomes a “yarn” or “filament”, the amount of energy and conversion process to weave that yarn into a textile is pretty consistent, whether the yarn is wool, cotton,  or synthetic.[7]

Let’s look at #1 first: the energy needed to make the fibers and create the yarn. For ease of comparison we’ll divide the fiber types into “natural” (from plants, animals and less commonly, minerals) and “synthetic” (man made).

For natural fibers you must look at field preparation, planting and field operations (mechanized irrigation, weed control, pest control and fertilizers (manure vs. synthetic chemicals)), harvesting and yields.  Synthetic fertilizer use is a major component of the high cost of conventional agriculture:  making just one ton of nitrogen fertilizer emits nearly 7 tons of CO2 equivalent greenhouse gases.

For synthetics, a crucial fact is that the fibers are made from fossil fuels.   Very high amounts of energy are used in extracting the oil from the ground as well as in the production of the polymers.

A study done by the Stockholm Environment Institute on behalf of the BioRegional Development Group  concludes that the energy used (and therefore the CO2 emitted) to create 1 ton of spun fiber is much higher for synthetics than for hemp or cotton:

KG of CO2 emissions per ton of spun   fiber:
crop cultivation fiber production TOTAL
polyester USA 0.00 9.52 9.52
cotton, conventional, USA 4.20 1.70 5.90
hemp, conventional 1.90 2.15 4.05
cotton, organic, India 2.00 1.80 3.80
cotton, organic, USA 0.90 1.45 2.35

The table above only gives results for polyester; other synthetics have more of an impact:  acrylic is 30% more energy intensive in its production than polyester [8] and nylon is even higher than that.

Not only is the quantity of GHG emissions of concern regarding synthetics, so too are the kinds of gasses produced during production of synthetic fibers.  Nylon, for example, creates emissions of N2O, which is 300 times more damaging than CO2 [9] and which, because of its long life (120 years) can reach the upper atmosphere and deplete the layer of stratospheric ozone, which is an important filter of UV radiation.  In fact, during the 1990s, N2O emissions from a single nylon plant in the UK were thought to have a global warming impact equivalent to more than 3% of the UK’s entire CO2 emissions.[10] A study done for the New Zealand Merino Wool Association shows how much less total energy is required for the production of natural fibers than synthetics:

Embodied   Energy used in production of various fibers:
energy use in   MJ per KG of fiber:
flax fibre   (MAT) 10
cotton 55
wool 63
Viscose 100
Polypropylene 115
Polyester 125
acrylic 175
Nylon 250

SOURCE:  “LCA: New Zealand Merino Wool Total Energy Use”, Barber and Pellow,      http://www.tech.plym.ac.uk/sme/mats324/mats324A9%20NFETE.htm

Natural fibers, in addition to having a smaller carbon footprint in the production of the spun fiber, have many additional  benefits:

  1. being able to be degraded by micro-organisms and composted (improving soil structure); in  this way the fixed CO2 in the fiber will be released and the cycle closed.   Synthetics do not decompose: in landfills they release  heavy metals and other additives into soil and groundwater.       Recycling requires costly separation, while incineration produces  pollutants – in the case of high density polyethylene, 3 tons of CO2 emissions are produced for ever 1 ton of material burnt.[11] Left in the environment, synthetic fibers contribute, for example, to the estimated 640,000 tons of abandoned  fishing nets in the world’s oceans.
  2. sequestering  carbon.  Sequestering carbon is the process through which CO2 from the atmosphere is absorbed by plants through photosynthesis and stored as carbon in biomass (leaves, stems, branches, roots, etc.) and soils.       Jute, for example, absorbs 2.4 tons of carbon per ton of dry fiber.[12]

Substituting organic fibers for conventionally grown fibers is not just a little better – but lots better in all respects:

  • uses less energy for production,
  • emits fewer greenhouse gases
  • and supports organic farming (which has myriad environmental, social and health benefits).

A study published by Innovations Agronomiques (2009) found that 43% less GHG are emitted per unit area under organic agriculture than under conventional agriculture.[13] A study done by Dr. David Pimentel of Cornell University found that organic farming systems used just 63% of the energy required by conventional farming systems, largely because of the massive amounts of energy requirements needed to synthesize nitrogen fertilizers. Further it was found in controlled long term trials that organic farming adds between 100-400kg of carbon per hectare to the soil each year, compared to non-organic farming.  When this stored carbon is included in the carbon footprint, it reduces the total GHG even further.[14] The key lies in the handling of organic matter (OM): because soil organic matter is primarily carbon, increases in soil OM levels will be directly correlated with carbon sequestration. While conventional farming typically depletes soil OM, organic farming builds it through the use of composted animal manures and cover crops.

Taking it one step further beyond the energy inputs we’re looking at, which help to mitigate climate change, organic farming helps to ensure other environmental and social goals:

  • eliminates the use of synthetic fertilizers, pesticides and genetically modified organisims      (GMOs) which is  an improvement in human health and agrobiodiversity
  • conserves water  (making the soil more friable so rainwater is absorbed better – lessening      irrigation requirements and erosion)
  • ensures sustained  biodiversity
  • and compared to forests, agricultural soils may be a more secure sink for atmospheric      carbon, since they are not vulnerable to logging and wildfire.

Organic agriculture is an undervalued and underestimated climate change tool that could be one of the most powerful strategies in the fight against global warming, according to Paul Hepperly, Rodale Institute Research Manager. The Rodale Institute Farming Systems Trial (FST) soil carbon data (which covers 30 years)  provides convincing evidence that improved global terrestrial stewardship–specifically including regenerative organic agricultural practices–can be the most effective currently available strategy for mitigating CO2 emissions.

At the fiber level it is clear that synthetics have a much bigger footprint than does any natural fiber, including wool or conventionally produced cotton.   So in terms of the carbon footprint at the fiber level, any natural fiber beats any synthetic – at this point in time.   Best of all is an organic natural fiber.

And next let’s look at #2, the energy needed to weave those yarns into fabric.

There is no dramatic difference in the amount of energy needed to weave fibers into fabric depending on fiber type.[15] The processing is generally the same whether the fiber is nylon, cotton, hemp, wool or polyester:   thermal energy required per meter of cloth is 4,500-5,500 Kcal and electrical energy required per meter of cloth is 0.45-0.55 kwh. [16] This translates into huge quantities of fossil fuels  –  both to create energy directly needed to power the mills, produce heat and steam, and power air conditioners, as well as indirectly to create the many chemicals used in production.  In addition, the textile industry has one of the lowest efficiencies in energy utilization because it is largely antiquated.

(1)    http://www.usatoday.com/story/news/nation/2013/02/28/climate-change-remaking-america/1917169/

(2)    Source: Energy Information Administration, Form EIA:848, “2002 Manufacturing Energy Consumption Survey,” Form EIA-810, “Monthly Refinery Report” (for 2002) and Documentatioin for Emissions of Greenhouse Gases in the United States 2003 (May 2005). http://www.eia.doe.gov/emeu/aer/txt/ptb1204.html

(3)    Dev, Vivek, “Carbon Footprint of Textiles”, April 3, 2009, http://www.domain-b.com/environment/20090403_carbon_footprint.html

(4)    Rupp, Jurg, “Ecology and Economy in Textile Finishing”,  Textile World,  Nov/Dec 2008

(5)    Rose, Coral, “CO2 Comes Out of the Closet”,  GreenBiz.com, September 24, 2007

(6)     U.S. Energy Information Administration, “International Energy Annual 2006”, posted Dec 8, 2008.

(7)    Many discussions of energy used to produce fabrics or final products made from fabrics (such as clothing) take the “use” phase of the article into consideration when evaluating the carbon footprint.  The argument goes that laundering the blouse (or whatever) adds considerably to the final energy tally for natural fibers, while synthetics don’t need as much water to wash nor as many launderings.  We do not take this component into consideration because

  1. it applies only to clothing; even sheets aren’t washed as often as clothing while upholstery is seldom cleaned.
  2. is biodegradeable detergent used?
  3. Is the washing machine used a new low water machine?  Is the water treated by a municipal facility?
  4. Synthetics begin to smell if not treated with antimicrobials, raising the energy score.

Indeed, it’s important to evaluate the sponsors of any published studies, because the studies done which evaluate the energy used to manufacture fabrics are often sponsored by organizations which might have an interest in the outcome.  Additionally, the data varies quite a bit so we have adopted the values which seem to be agreed upon by most studies.

(8)     Ibid.

(9)    “Tesco carbon footprint study confirms organic farming is energy efficient, but excludes key climate benefit of organic farming, soil carbon”, Prism Webcast News, April 30, 2008, http://prismwebcastnews.com/2008/04/30/tesco-carbon-footprint-study-confirms-organic-farming%E2%80%99s-energy-efficiency-but-excludes-key-climate-benefit-of-organic-farming-%E2%80%93-soil-carbon/

(10)  Fletcher, Kate, Sustainable Fashion and Textiles,  Earthscan, 2008,  Page 13

(11) “Why Natural Fibers”, FAO, 2009: http://www.naturalfibres2009.org/en/iynf/sustainable.html

(12)  Ibid.

(13) Aubert, C. et al.,  (2009) Organic farming and climate change: major conclusions of the Clermont-Ferrand seminar (2008) [Agriculture biologique et changement climatique : principales conclusions du colloque de Clermont-Ferrand (2008)]. Carrefours de l’Innovation Agronomique 4. Online at <http://www.inra.fr/ciag/revue_innovations_agronomiques/volume_4_janvier_2009>

(14) International Trade Centre UNCTAD/WTO and Research Institute of Organic Agriculture (FiBL);    Organic Farming and Climate Change; Geneva: ITC, 2007.

(15) 24th session of the FAO Committee on Commodity Problems IGG on Hard Fibers of the United Nations

(16)  “Improving profits with energy-efficiency enhancements”, December 2008,  Journal for Asia on Textile and Apparel,  http://textile.2456.com/eng/epub/n_details.asp?epubiid=4&id=3296

We’ve looked at the frame, suspension system and cushioning on a sofa;  next up:  fabric.  We consider fabric to be a very important, yet certainly misunderstood, component of furniture.  It can make up 40 – 45% of the price of a sofa.    So we’ll be breaking this topic up into several smaller bite size portions:  after a general discussion of what kind of fabric to choose for your lifestyle,  we’ll look at the embodied energy in your fabric choice, and then why an organic fabric is better for you as well as the rest of us.

One thing to remember is that there is much  more fabric used in constructing an  upholstered piece of furniture than just the decorative fabric that you see covering the piece – a typical “quality” sofa also uses about 20 yards of decorative fabric, plus 20 yds of lining fabric, 15 yds of burlap and 10 yds of muslin, for a total of 65 yards of fabric!

So what do people look for in an upholstery fabric?

After color, fabric durability is probably top of everybody’s list.  Durability translates into most people’s minds as “heft” – in other words, a lightweight cotton doesn’t usually come to mind.  A fabric with densely woven yarns tends to be more durable than a loosely woven fabric.  Often people assume leather is the best choice for a busy family.  We did a post about leather – if you’re at all considering leather, please read this first (https://oecotextiles.wordpress.com/2012/05/22/leather-furniture-what-are-you-buying/ ).  Another choice  widely touted is to use Ultrasuede.  Please see our post about this fabric: https://oecotextiles.wordpress.com/2010/09/08/is-ultrasuede%c2%ae-a-green-fabric/.

Equally important in evaluating durability as the weight of the fabric is the length of the fibers.  Cotton as a fiber is much softer and of shorter lengths than either hemp or linen, averaging 0.79 -1.30 inches in length.  Hemp’s average length is 8 inches, but can range up to 180 inches in length. In a study done by Tallant et. al. of the Southern Regional Research Laboratory,  “results indicate that increases in shortfibers are detrimental to virtually all yarn and fabric properties and require increased roving twist for efficient drafting during spinning. A 1% increase in fibers shorter than 3/8 in. causes a strength loss in yarns of somewhat more than 1%.”[1]    In fact, the US textile industry has  advocated obtaining the Short Fiber Content (SFC) for cotton classification.  SFC is defined as the percentage of fibers shorter than ½ inch.  So a lower cost sofa upholstered in cotton fabric, even one identified as an upholstery fabric, could have been woven of short fiber cotton, a cheaper alternative to longer fiber cotton and one which is inherently less durable – no matter how durable it appears on the showroom floor.

Patagonia, the California manufacturer of outdoor apparel, has conducted  tests on both hemp and other natural fibers, with the results showing that hemp has eight times the tensile strength and four times the durability of other natural fibers.   Ecolution had a hemp twill fabric tested for tensile and tear strength, and compared the results with a 12-oz cotton denim.  Hemp beat cotton every time:   Overall, the 100% hemp fabric had 62% greater tear strength and 102% greater tensile strength. [2]   And polyester trumps them both – but that’s a whole different ballgame, and we’ll get to that eventually.

There is a high correlation between fiber strength and yarn strength.  People have used silk as an upholstery fabric for hundreds of years, and often the silk fabric is quite lightweight;  but silk is a very strong fiber.

In addition to the fiber used, yarns are given a twist to add strength. This is called Twist Per Inch or Meter (TPI or TPM) – a tighter twist (or more turns per inch) generally gives more strength.  These yarns are generally smooth and dense.

So that brings us to weave structure.  Weave structures get very complicated, and we can refer you to lots of references for those so inclined  to do more research (see references listed at the end of the post).

But knowing the fibers, yarn and weave construction still doesn’t answer people’s questions – they want some kind of objective measurement.  So in order to objectively compare fabrics,  tests to determine wear were developed (called abrasion tests), and many people today refer to these test results as a way to measure fabric durability.

Abrasion test results are supposed to forecast how well a fabric will stand up to wear and tear in upholstery applications.  There are two tests generally used:  Martindale  and Wyzenbeek (WZ).  Martindale is the preferred test in Europe; Wyzenbeek is preferred in the United States.  There is no correlation between the two tests, so it’s not possible to estimate the number of cycles that would be achieved on one test if the other were known:

  • Wyzenbeek (ASTM D4157-02):  a piece of cotton duck  fabric or wire mesh is rubbed in a straight back and forth motion on a      piece of fabric until “noticeable wear” or thread break is evident.  One back and forth motion is called a “double rub” (sometimes written as “dbl rub”).
  • Martindale (ASTM D4966-98):  the abradant in this test is worsted wool or wire screen, the fabric specimen is a circle or round      shape, and the rubbing is done in a figure 8, and not in a straight line as in Wyzenbeek.  One circle 8 is a cycle.

The Association for Contract Textiles performance guidelines lists the following test results as being suitable for commercial fabrics:

Wyzenbeek Martindale
General contract 15,000 20,000
Heavy duty contract 30,000 40,000

According to the Association for Contract Textiles, end use examples of “heavy duty contract” where 30,000 WZ results should be appropriate are single shift corporate offices, hotel rooms, conference rooms and dining areas.  Areas which would require higher than 30,000 WZ are: 24 hour facilities (like transportation terminals, healthcare emergency rooms, casino gambling areas,  and telemarketing offices) and theatres, stadiums, lecture halls and fast food restaurants.

Sina Pearson, the textile designer, has been quoted in the Philadelphia Inquirer as saying that 6,000 rubs (Wyzenbeek) may be “just fine” for residential use”[3]   The web site for Vivavi furniture gives these ratings for residential use:

Wyzenbeek
from to
Light use 6,000 9,000
Medium use 9,000 15,000
Heavy use 15,000 30,000
Maximum use >30,000

Theoretically, the higher the rating (from either test) the more durable the fabric is purported to be.  It’s not unusual for designers today to ask for 100,000 WZ results.  Is this because we think more is always better?  Does a test of 1,000,000 WZ guarantee that your fabric will survive years longer than one rated only 100,000 WZ?  Maripaul Yates, in her guidebook for interior designers, says that “test results are so unreliable and the margin of error is so great that its competency as a predictor of actual wear is questionable.”[4]  The Association for Contract Textiles website states that “double rubs exceeding 100,000 are not meaningful in providing additional value in use.  Higher abrasion resistance does not necessarily indicate a significant extension of the service life of the fabric.”

There are, apparently, many ways to tweak test results. We’ve been told if we don’t like the test results from one lab, we can try Lab X, where the results tend to be better.  The reasons that these tests produce inconsistent results are:

1. Variation in test methods:       Measuring the resistance to abrasion is very complex.  Test results are affected by many factors that include the properties and dimensions of  the fibers; the structure of the yarns; the construction of the fabrics;  the type, kind and amount of treatments added to the fibers, yarns, or fabric; the time elapsed since the abradant was changed;  the type of  abradant used; the tension of the specimen being tested,the pressure between the abradant and the specimen…and other variables.

2. Subjectivity:    The  measurement of the relative amount of abrasion can be affected by the method of evaluation and is often influenced by the judgment of the operator.  Cycles to rupture, color change, appearance change and so forth are highly variable parameters and subjective.

3. Games Playing:     Then there is, frankly, dishonest collusion between the tester and the testee.  There are lots of games that are played. For instance, in Wyzenbeek, the abradant, either cotton duck or a metal screen, must be replaced every million double rubs. If your fabric is tested at the beginning of that abradant’s life versus the end of its life, well.. you can see the games. Also, how much tension the subject fabric is under –  the “pull” of the stationary anchor of the subject fabric, affects the  rating.

In the final analysis, if you have doubts about the durability of a fabric,  will any number of test results convince you otherwise?  Also, if your heart is set on a silk  jacquard, for example, I bet it would take a lot of data to sway you from your heart’s desire.  Some variables just trump the raw data.

REFERENCES FOR WEAVE STRUCTURE:

1.  Peirce, F.T., The Geometry of Cloth Structure, “The Journal of the Textile Institute”, 1937: pp. 45 – 196

2. Brierley, S. Cloth Settings Reconsidered The Textile Manufacturer 79 1952: pp. 349 – 351.

3. Milašius, V. An Integrated Structure Factor for Woven Fabrics, Part I: Estimation of the Weave The Journal of the Textile Institute 91 Part 1 No. 2 2000: pp. 268 – 276.

4. Kumpikaitė, E., Sviderskytė, A. The Influence of Woven Fabric Structure on the Woven Fabric Strength Materials Science (Medžiagotyra) 12 (2) 2006: pp. 162 – 166.

5. Frydrych, I., Dziworska, G., Matusiak, M. Influence of Yarn Properties on the Strength Properties of Plain Fabric Fibres and Textile in Eastern Europe 4 2000: pp. 42 – 45.

6. ISO 13934-1, Textiles – Tensile properties of fabrics – Part 1: Determination of Maximum Force and Elongation at Maximum Force using the Strip Method, 1999, pp. 16.


[1] Tallant, John, Fiori, Louis and Lagendre, Dorothy, “The Effect of the Short Fibers in a Cotton on its Processing Efficiency and Product Quality”, Textile Research Journal, Vol 29, No. 9, 687-695 (1959)

[2]  http://www.globalhemp.com/Archives/Magazines/historic_fiber_remains.html

[3] ‘How will Performance Fabrics Behave”, Home & Design,  The Philadelphia Inquirer, April 11, 2008.

[4] Yates, Maripaul, “Fabrics: A Guide for Interior Designers and Architects”, WW. Norton and Company.

So we have produced the frame and put in the suspension system.  Next in line are the cushions – something soft to sit on.

In an upholstered piece of furniture, the cushions need a filler of some kind.  Before plastics, our grandparents used feathers, horsehair or wool or cotton batting.  But with the advent of plastics, our lives changed.  Polyurethane foam was introduced as a cushion component in furniture in 1957 –  only a bit more than 50 years ago – and quickly replaced latex, excelsior, cotton batting, horsehair and wool because it was CHEAP!  Imagine – polyfoam cushions at $2 vs. natural latex at $7 or $8.  Price made all the difference.  Today, Eisenberg Upholstery’s website says that “easily 25% of all furniture repairs I see deal with bad foam or padding. The point is start with good foam and you won’t be sorry.”

Cushions are generally measured by two values:

  • The density or weight per cubic foot of polyurethane foam. The higher the number the more it weighs.   Foam that has a density of 1.8 foam, for example, contains 1.8 lbs of foam per cubic foot and foam that is 2.5 foam would have 2.5 lbs of foam per cubic foot.  Density for sofa cushions ranges between 1.6 and 5 or even 6.
  • The second measurement tells you the firmness of the foam  (called the IFD  – the Indentation Force Deflection). The IFD is the feel of the cushion, and tells you how much weight it takes to compress the foam by one third. The lower IFD will sit softer. The higher IFD will sit firmer.  IFD numbers range between 15 to 35

What many people don’t realize is that the density and firmness numbers go hand in hand – you can’t look at one without the other.  They are expressed as density/firmness, for example: 15/30 or 29/52.  The first, 15/30 means that 1.5 pounds of foam per cubic foot will take 30 pounds of weight to compress the foam 33%.  The second example means that 2.9 pounds per cubic foot of foam will take 52 pounds of weight to compress the block one third.

The foam is then wrapped with something to soften the edges – for example,  Dacron or polyester batting, cotton or wool batting or down/feathers.

Lowest quality sofas will not even wrap the (low quality) foam; higher quality sofas have cushions that are made from very high quality foam and wrapped in wool or down.  But as you will see, the foam is itself very problematic.

You will now commonly find in the market polyurethane foam, synthetic or natural latex rubber and the new, highly touted soy based foam.  We’ll look at these individually, and explore issues other than embodied energy :

The most popular type of cushion filler today is polyurethane foam. Also known as “Polyfoam”, it has been the standard fill in most furniture since its wide scale introduction in the 1960’s because of its low cost (really cheap!).  A staggering 2.1 billion pounds of flexible polyurethane foam is produced every year in the US alone.[1]

Polyurethane foam is a by-product of the same process used to make petroleum from crude oil. It involves two main ingredients: polyols and diisocyanates:

  • A polyol is a substance created through a chemical reaction using methyloxirane (also called propylene oxide).
  • Toluene diisocyanate (TDI) is the most common isocyanate employed in polyurethane manufacturing, and is      considered the ‘workhorse’ of flexible foam production.
    • Both methyloxirane  and TDI have been formally identified as carcinogens by the State of California
    • Both are on the List of  Toxic Substances under the Canadian Environmental Protection Act.
    • Propylene oxide and TDI are also among 216 chemicals that have been proven to cause mammary tumors.       However, none of these chemicals have ever been regulated for their potential to induce breast cancer.

The US Environmental Protection Agency (EPA) considers polyurethane foam fabrication facilities potential major sources of several hazardous air pollutants including methylene chloride, toluene diisocyanate (TDI), and hydrogen cyanide.   There have been many cases of occupational exposure in factories (resulting in isocyanate-induced asthma, respiratory disease and death), but exposure isn’t limited to factories: The State of North Carolina forced the closure of a polyurethane manufacturing plant after local residents tested positive for TDI exposure and isocyanate exposure has been found at such places as public schools.

The United States Occupational Safety and Health Administration (OSHA) has yet to establish exposure limits on carcinogenicity for polyurethane foam. This does not mean, as Len Laycock explains in his series “Killing You Softly”, “that consumers are not exposed to hazardous air pollutants when using materials that contain polyurethane. Once upon a time, household dust was just a nuisance. Today, however, house dust represents a time capsule of all the chemicals that enter people’s homes. This includes particles created from the break down of polyurethane foam. From sofas and chairs, to shoes and carpet underlay, sources of polyurethane dust are plentiful. Organotin compounds are one of the chemical groups found in household dust that have been linked to polyurethane foam. Highly poisonous, even in small amounts, these compounds can disrupt hormonal and reproductive systems, and are toxic to the immune system. Early life exposure has been shown to disrupt brain development.”

“Since most people spend a majority of their time indoors, there is ample opportunity for frequent and prolonged exposure to the dust and its load of contaminants. And if the dust doesn’t get you, research also indicates that toluene, a known neurotoxin, off gases from polyurethane foam products.”

I found this on the Sovn blog:

“the average queen-sized polyurethane foam mattress covered in polyester fabric loses HALF its weight over ten years of use. Where does the weight go? Polyurethane oxidizes, and it creates “fluff” (dust) which is released into the air and eventually settles in and around your home and yes, you breathe in this dust. Some of the chemicals in use in these types of mattresses include formaldehyde, styrene, toluene di-isocyanate (TDI), antimony…the list goes on and on.”

Polyurethane foams are advertised as being recyclable, and most manufacturing scraps (i.e., post industrial) are virtually all recycled – yet the products from this waste have limited applications (such as carpet backing).  Post consumer, the product is difficult to recycle, and the sheer volume of scrap foam that is generated (mainly due to old cushions) is greater than the rate at which it can be recycled – so it  mostly ends up at the landfill.  This recycling claim only perpetuates the continued use of hazardous and carcinogenic chemicals.

Polyfoam has some hidden costs (other than the chemical “witch’s brew” described above):  besides its relatively innocuous tendency to break down rapidly, resulting in lumpy cushions, and its poor porosity (giving it a tendency to trap moisture which results in mold), it is also extremely flammable, and therein lies another rub!

Polyurethane foam is so flammable that it’s often referred to by fire marshals as “solid gasoline.” When untreated foam is ignited, it burns extremely fast. Ignited polyurethane foam sofas can reach temperatures over 1400 degrees Fahrenheit within minutes. Making it even more deadly are the toxic gasses produced by burning polyurethane foam –  such as hydrogen cyanide. The gas was also implicated in the 2003 Rhode Island nightclub fire that killed 100 people, including Great White guitarist Ty Longley, and injured more than 200 others. Tellingly, a witness to that fire, television news cameraman Brian Butler, told interviewers that “It had to be two minutes, tops, before the whole place was black smoke.”   Just one breath of superheated toxic gas can incapacitate a person, preventing escape from a burning structure.

Therefore, flame-retardant chemicals are added to its production when it is used in mattresses and upholstered furniture.   This application of chemicals does not alleviate all concerns associated with its flammability, since polyurethane foam releases a number of toxic substances at different temperature stages. For example, at temperatures of about 800 degrees, polyurethane foam begins to rapidly decompose, releasing gases and compounds such as hydrogen cyanide, carbon monoxide, acetronitrile, acrylonitrile, pyridine, ethylene, ethane, propane, butadine, propinitrile, acetaldehyde, methylacrylonitrile, benzene, pyrrole, toluene, methyl pyridine, methyl cyanobenzene, naphthalene, quinoline, indene, and carbon dioxide.

According to the federal government’s National Institute of Standards and Technology, polyurethane foam in furniture is responsible for 30 percent of U.S. deaths from fires each year.

In conclusion, the benefits of polyfoam (low cost) is far outweighed by the disadvantages:  being made from a non-renewable resource (oil),  and the toxicity of main chemical components as well as the toxicity of the flame retardants added to the foam – not to mention the fact that even the best foams begin to break down after around 10 – 12 years of “normal use”.[2]

Now we see ads for a  new miracle product: a bio based foam made from soybeans, which is highly touted as “A leap forward in foam technology, conserving increasingly scarce oil resources while substituting more sustainable options,” as one product brochure describes it. Companies and media releases claim that using soy in polyurethane foam production results in fewer greenhouse gas emissions, requires less energy, and could significantly reduce reliance on petroleum. Many companies are jumping on the bandwagon, advertising their green program of using foam cushions with “20% bio based foam” (everybody knows we have to start somewhere and that’s a start, right?).  As Len Laycock,  CEO of Upholstery Arts (which was the first furniture company in the world to introduce Cradle to Cradle product cycle and achieve the Rainforest Alliance Forest Stewardship Council Certification),  says  – who wouldn’t sleep sounder with such promising news?   (I have leaned heavily on Mr. Laycock’s articles on poly and soy foam, “Killing You Softly”, for this post.)

As with so many over hyped ‘green’ claims, it’s the things they don’t say that matter most.  While these claims contain grains of truth, they are a far cry from the whole truth. So called ‘soy foam’ is hardly the dreamy green product that manufacturers and suppliers want people to believe.

To begin, let’s look at why they claim soy foam is green:

  1. it’s made from soybeans, a renewable  resource
  2. it reduces our dependence on fossil  fuels  by  both reducing the amount of fossil fuel needed for      the feedstock  and  by reducing the energy requirements needed to produce the foam.

Are these viable claims?

It’s made from soybeans, a renewable resource:  This claim is undeniably true.   But what they don’t tell you is that this product, marketed as soy or bio-based,  contains very little soy. In fact, it is more accurate to call it ‘polyurethane based foam with a touch of soy added for marketing purposes’. For example, a product marketed as “20% soy based” may sound impressive, but what this typically means is that only 20 % of the polyol portion of the foam is derived from soy. Given that polyurethane foam is made by combining two main ingredients—a polyol and an isocyanate—in approximately equal parts, “20% soy based” translates to a mere 10% of the foam’s total volume. In this example the product remains 90% polyurethane foam and by any reasonable measure cannot legitimately be described as ‘based’ on soy. If you go to Starbucks and buy a 20 oz coffee and add 2-3 soy milk/creamers to it, does it become “soy-based” coffee?

It reduces our dependence on fossil fuels: According to Cargill, a multi-national producer of agricultural and industrial products, including BiOH polyol (the “soy” portion of “soy foam”), the soy based portion of so called ‘soy foam’ ranges from  5% up to a theoretical 40% of polyurethane foam formulations. This means that while suppliers may claim that ‘bio foams’ are based on renewable materials such as soy, in reality a whopping 90 to 95%, and sometimes more of the product consists of the same old petro-chemical based brew of toxic chemicals. This is no ‘leap forward in foam technology’.

It is true that the energy needed to produce soy-based foam is, according to Cargill, who manufactures the soy polyol,  less that that needed to produce the polyurethane foam.  But the way they report the difference is certainly difficult to decipher:  soy based polyols use 23% less energy to produce than petroleum based polyols, according to Cargill’s LCA.   But the formula for the foam uses only 20% soy based  polyols, so by my crude calculations (20% of 50%…) the energy savings of 20% soy based foam would require only 4.6%  less energy than that used to make the petroleum based foam.  But hey, that’s still a savings and every little bit helps get us closer to a self sustaining economy and is friendlier to the planet.

But the real problem with advertising soy based foam as a new, miracle green product is that the foam, whether soy based or not, remains a “greenhouse gas spewing pretroleum product and a witches brew of carcinogenic and neurotoxic chemicals”, according to Len Laycock.

My concern with the use of soy is not its carbon footprint but rather the introduction of a whole new universe of concerns such as pesticide use, genetically modifed crops, appropriation of food stocks and deforestation.  Most soy crops are now GMO:  according to the USDA, over 91% of all soy crops in the US are now GMO; in 2007, 58.6% of all soybeans worldwide were GMO.  If you don’t think that’s a big deal, please read our posts on these issues (9.23.09 and 9.29.09).  The debate still rages today.  Greenpeace did an expose (“Eating Up The Amazon”) on what they consider to be a driving force behind Amazon rainforest destruction – Cargill’s race to establish soy plantations in Brazil.  You can read the Greenpeace report here, and Cargill’s rejoinder here.

In “Killing You Softly“, another sinister side of  soy based foam marketing is brought to light:

“Pretending to offer a ‘soy based’ foam allows these corporations to cloak themselves in a green blanket and masquerade as environmentally responsible corporations when in practice they are not. By highlighting small petroleum savings, they conveniently distract the public from the fact that this product’s manufacture and use continues to threaten human health and poses serious disposal problems. Aside from replacing a small portion of petroleum polyols, the production of polyurethane based foams with soy added continues to rely heavily on ‘the workhorse of the polyurethane foam industry’, cancer causing toluene diisocyanate (TDI). So it remains ‘business as usual ‘ for polyurethane manufacturers.”

Despite what polyurethane foam and furniture companies imply , soy foam is not biodegradable either. Buried in the footnotes on their website, Cargill quietly acknowledges that, “foams made with BiOH polyols are not more biodegradable than traditional petroleum-based cushioning”. Those ever so carefully phrased words are an admission that all polyurethane foams, with or without soy added, simply cannot biodegrade. And so they will languish in our garbage dumps, leach into our water, and find their way into the soft tissue of young children, contaminating and compromising life long after their intended use.

The current marketing of polyurethane foam and furniture made with ‘soy foam’ is merely a page out the tobacco industry’s current ‘greenwashing’ play book. Like a subliminal message, the polyurethane foam and furniture industries are using the soothing words and images of the environmental movement to distract people from the known negative health and environmental impacts of polyurethane foam manufacture, use and disposal.

Cigarettes that are organic (pesticide-free), completely biodegradable, and manufactured using renewable tobacco, still cause cancer and countless deaths. Polyurethane foam made with small amounts of soy derived materials still exposes human beings to toxic, carcinogenic materials, still relies on oil production, and still poisons life.

So what’s a poor consumer to do?  We think there is a viable, albeit expensive, product choice: natural latex (rubber). The word “latex” can be confusing for consumers, because it has been used to describe both natural and synthetic products interchangeably, without adequate explanation. This product can be 100% natural (natural latex) or 100% man-made (derived from petrochemicals) – or it can be a combination of the two – the so called “natural latex”.   Also, remember latex is rubber and rubber is latex.

  • Natural latex – The raw material for  natural latex comes from a renewable resource – it is obtained from the sap of the Hevea Brasiliensis (rubber) tree, and was once widely used for cushioning.  Rubber trees are cultivated, mainly in South East Asia,  through a new planting and replanting program by large scale plantation and small farmers to ensure a continuous sustainable supply of natural  latex.  Natural latex is both recyclable and biodegradeable, and is mold, mildew and dust mite resistant.  It is not highly  flammable and does not require fire retardant chemicals to pass the Cal 117 test.  It has little or no off-gassing associated with it.    Because natural rubber has high energy production costs (although a  smaller footprint than either polyurethane or soy-based foams [3]),  and is restricted to a limited supply, it is more costly than petroleum based foam.
  • Synthetic latex – The terminology is very confusing, because synthetic latex is often referred to simply as  “latex” or even “100% natural latex”.  It is also known as styrene-butadiene rubber  (SBR).   The chemical styrene is  toxic to the lungs, liver, and brain.  Synthetic additives are added to achieve stabilization.    Often however, synthetic latex  can be made of combinations of polyurethane and natural latex, or a  combination of 70% natural latex and 30% SBR.  Most stores sell one of these versions under the term “natural latex” – so caveat emptor!    Being  petroleum based, the source of supply for the production of  synthetic latex is certainly non-sustainable and diminishing as well.

Natural latex is breathable, biodegradeable,  healthier (i.e., totally nontoxic, and mold & mildew proof) and lasts longer than polyfoam – some reports say up to 20 times longer.

Is there really a question as to which to buy?


[1] DFE 2008 Office Chair Foam;  http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics

[2] http://www.foamforyou.com/Foam_Specs.htm

[3] Op cit., http://en.wikiversity.org/wiki/DFE2008_Office_Chair_Foam#Basics


camille 1

So you’re shopping for a sofa, and you see this one in a store.  In a different store, you see the one below.

denmark%20transitiona 11l

 

One sofa (the one on top) costs $3000;  the other costs $1500.  Why the wide disparity in price?

Shopping for a sofa is fraught with anxiety – we don’t do it often (for most people it’s every 7 – 10 years) so we don’t know how to shop for it.  Knowing what to look for, and how to evaluate a sofa, might take some of the anxiety away.  And knowing a bit about the components and how they’re put together will explain the difference in price.  It’s important to keep that in mind while you’re being seduced by the alluring upholstery, svelte arms and come-hither cushions.  But if your darling’s joints are weak, springs loose and cushions flat, you’ll quickly lose that lovin’ feeling.  Not to mention the additional chemical guests you’ll be inviting into your home with the sofa.

Start by asking yourself questions such as who will use the sofa  – will the kids dump themselves and their bags on it right after school or is it in a room that’s just used for entertaining?  How long do you want it to last?  Do you want to sink into the cushions or sit up straight?  Nap on the sofa?

One of the first things you should do – really before doing anything else –  is look at the sticker price and concentrate on the amortized cost  (cost per day) of buying each one.  There is a reason for the price disparity – they have to cut corners someplace, so lower quality materials are used and construction is …  well let’s just say it’s not built to last.  “Quality”  translates into “useful life”.  For simplicity, let’s assume the top sofa will last 20 years while the bottom sofa will last just 5.  That would mean the top sofa costs $0.41/day while the bottom sofa costs $0.82/day = exactly double.  The cost of owning the top sofa is half as much as the cost of owning the bottom sofa.

Dr. Thomas J. Stanley, in his book The Millionaire Mind, observed: “By definition, millionaires tend to be accumulators, a trait they inherited from their parents who were collectors.  Their parents and grandparents held on to things that had value. So the majority of millionaires have a family legacy of collecting, saving, and preserving.  Waste not, want not is a theme acted out by first-generation millionaires today”.[1]

With regard to how this trait applies to buying furniture:

They deliberately purchase furniture today they can pass on to the younger generation tomorrow.  This, in essence, is their definition of quality furniture.  It will outlive a person’s normal adult life span, will never lose its appeal, and will probably appreciate in value.[2]

A good quality sofa is an investment, like any other quality purchase that you expect to last.

For the next few weeks I’ll break a sofa down into component parts and talk about each one separately, starting this week with the frame and suspension system:

FRAME:
A very low cost sofa is probably made of engineered wood – such as plywood, particleboard, Medium Density Fiberboard (MDF) or glulam  –  all of which can legally be referred to as “solid wood products”.   Engineered wood (or composite, man-made or manufactured wood) are made by binding the strands, particles, fibers or veneers of wood with adhesives – most often that means urea formaldehyde (a known carcinogen) and finished with polyurethane or aluminum oxide.  In laymans terms, MDF (for example)  is sawdust held together with glue.  MDF has a life span of 1/10th to 1/4th that of solid wood, properly constructed – and costs about 1/10th to 1/4th that of solid wood.  Cutting, sanding, or releasing particles of MDF into the air might be a high risk  and should be avoided.  If the MDF isn’t properly sealed, it can leak formaldehyde for years, pumping it into your home or office.

Often manufacturers use wood veneers over MDF cores, and consumers have no idea that they’re not buying real wood.  Veneers are also used on solid wood (usually a less expensive wood) –that has a similar property as the veneer, allowing them to swell and contract together with changes in humidity.  They also respond similarly to stain and finish products. The bond between manufactured wood (MDF) and the veneer is not as strong or stable as that of the solid wood because MDF tends to respond more dramatically to changes in humidity and temperature, and is more rigid than solid wood, making the bond less durable.

Recognizing solid wood veneer furniture is fairly simple. Look to the bottom and back edges of tabletops, drawers and shelves. Solid wood always has grain, whereas MDF and particle board do not. These unexposed edges will not typically be veneered.

Another thing which is often cited as a way to evaluate quality is to pick up the sofa – if it’s really heavy, it’s probably made of solid wood – or so the saying goes.  However MDF is also very heavy – so weight alone cannot really be used as a test.

At the next step up, soft woods (like pine) may be used.  The highest quality furniture uses kiln dried hard wood, like ash, maple or poplar, which offer  greater strength and stability.  jj But not all wood is created equal: we think that it’s important to choose a wood that did not come from an endangered forest (such as a tropical forest), and preferably one that is sustainably managed, because forests, according to the National Resources Defense Council, are critical to maintaining life on Earth.  And that’s something we should pay attention to!   (See our post about wood used in furniture at https://oecotextiles.wordpress.com/2012/08/23/how-to-buy-a-quality-sofa-part-2-wood/ )  Wood certified by the Forest Stewardship Council (FSC) ensures that the wood used in your sofa was from a managed forest.

How the wood is connected is important too.  Lower cost sofas are often stapled together, or you’ll get plastic legs screwed into the frame instead of wooden legs that are part of the posts or bolted into the frame.   Give it a year or two and the arms get loose or the frame wobbles.  Higher cost sofas are held together with glue and dowels or tongue-and-groove joints, making the joints even stronger than the wood itself.  Corner blocks (in each corner of the frame, near the legs, an extra piece of wood joins the two side rails) are important.

Finally, the wood is often stained or varnished – both of which emit harmful VOC’s of various kinds, depending on the stains or varnishes used.  A safe alternative is to ensure that the stains/varnishes used don’t emit harmful VOC’s such as formaldehyde, and formulated without aromatic solvents, heavy metals in the pigments, toluene solvents or other harmful chemicals.

SUSPENSION SYSTEM:

The suspension system determines the bounce in the cushions, and how they support your weight when you sit on them.   The differing degrees of pressure your body puts on the cushions causes the coils to respond, giving what is known as “ride”.  Generally, the higher the number of coils, the better the ride.  The Gold Standard has always been the labor-intensive, 8-way hand-tied spring system. It’s expensive to do it right, and few companies do. When done correctly each spring is set into the deck webbing and attached, with various spring rates depending on what portion of the seat deck its located. They are then tied together (8 strings per piece) and knotted at each juncture (not looped! – only knotting keeps the spring deck together if a string breaks). Much has been said about how eight-way hand-tied spring-up systems are superior to any other kind. “It’s a sacred cow in the industry,” says Professor C. Thomas Culbreth, director of the furniture manufacturing and management center at North Carolina State University [3].

But not all eight-way hand-tied spring-ups are built the same way, and the sinuous spring – or S –  system,  will last just as long, and for most people the comfort level is the same.  Sinuous springs are “S” shaped and run from the front of the seat to the back. These springs are supported by additional wires that cross from side to side.  The S springs lack the localized response of a coil system but gives a firm ride that some people prefer, and it has less potential for sagging over time.   It also makes for a strong seat, and it might be the preferred option in a sleeker style as it requires less space.

Next week we’ll tackle cushions, because that’s, as they say, a whole nother ballgame.


[1] Stanley, Thomas J., The Millionaire Mind, Andrews McMeel Publishing, 2001, p.294

[2] Ibid.

True Cost of Fast Fashion

O Ecotextiles (and Two Sisters Ecotextiles)

Summer has been beautiful in Seattle this year – and I’ve been taking advantage of it.  My month turned into almost two months – I just couldn’t bring myself back to the computer.  But now I’m refreshed and ready to go again.

We’ve often had people question why organic sofas cost “so much” – and I’ll address that next week.  This week let’s talk about what has become known as “fast fashion” – the idea of moving the newest trends from the catwalk to the store quickly to capture the newest design trends.  And the consumers are responding:   A Cambridge University study[1] found that  people were buying a third more clothes in 2006 than they were in 2002, and women have four times as many clothes in their wardrobe than they did in 1980.  And they get

rid of a similar amount.   oscar-wilde-FAST-FASHION-quotes

Fast fashion is all about having trendy, cutting-edge looks NOW  – and at bargain prices.  Brands began competing against each other for market share by introducing more lines per year at lower costs, culminating in a situation where “fashion houses now offer up to 18 collections a year’ and the low cost, so called ‘value end’ is ‘booming; doubling in size in just 5 years.”[2]

So who’s paying for this fast fashion?

Turns out we all are.

Elizabeth Cline,  author of Overdressed: The Shockingly High Cost Of Cheap Fashion, once described buying a pair of shoes at Kmart:  “I remember that the shoes just smelled toxic, like there were fumes coming off of them. That made me wonder what the environmental impact of what I was doing was.”[3]

The same thing happens to me when I pick up a cute whatever and then quickly put it down when I catch its chemical-y smell. What is the fast fashion we love actually made of?

Some really bad stuff, it turns out.

Greenpeace released a report entitled Toxic Threads[4] about the chemicals found in apparel produced by major brands (such as Gap, Levis, Mango, Calvin Klein, Zara and H&M).  They tested 141 articles of clothing they bought in 29 different countries – and all the articles tested contained either phthalates, nonylphenol ethoxylates (NPEs) or azo dyes  –  and sometimes all three.  These chemicals are found in  clothing and are available to our bodies when worn next to the skin:

  • I think you know some of the health concerns regarding phthalates and hormone disruptors since there has been lots in the media about Bisphenol A (a synthetic estrogen) – surprisingly a component in textile processing.  A brand new study has linked phthalates to increased insulin resistance in teenagers, a condition that can lead to Type 2 diabetes.[5]
  • Nonylphenol ethoxylates (NPEs) are a group of chemicals that mimic the human hormone estrogen.  NPEs are highly toxic to aquatic life, degrade into a long-lived chemical that builds up in the food chain, and may harm reproduction and development in humans.   Both the EU and Canada have passed laws regulating the use of NPEs.
  • And azo dyes can break down into amines which cause cancer – these too have been regulated in the EU and elsewhere around the world.

These chemicals were found in clothing we put on without a second thought, but they are available to our bodies when worn next to the skin – which is a permeable membrane.  Dermal contact is a major route of exposure for these chemicals.

On top of the effects to our personal health, the environment takes a beating too:  the textile industry is the #1 industrial polluter of water on the planet, dumping untreated effluent (containing a witches’ brew of toxic chemicals) into our groundwater.  And we’re all downstream.

Garment Workers 02a (Reuters)     Most consumers still buy their clothes without thinking about the workers. Sadly, the price of cheap fashion today is slave labor and inhumane working conditions.

“Buyers pressure factories to deliver quality products with ever-shorter lead times. Most factories just don’t have the tools and expertise to manage this effectively, so they put the squeeze on the workers. It’s the only margin they have to play with.”[6]

A Sri Lankan factory owner interviewed by Oxfam demonstrates the pressure they are now under: “Last year the deadlines were about 90 days… [This year] the deadlines for delivery are about 60 days. Sometimes even 45… They have drastically come down.”[7]

The Clean Clothes Campaign, which tries to improve working conditions in the global garment industry, describes similar instances with garment workers in China: “We have endless overtime in the peak season and we sit working non-stop for 13 to 14 hours a day.  It’s like this every day – we sew and sew without a break until our arms feel sore and stiff.”

The collapse of the garment factory Rana Plaza in
Bangladesh in April, 2013 killed 1,129 people – and was the last in a long series of garment factory accidents that have killed over 2,000 garment workers since 2005[8].   Warnings not to use the building were ignored and workers were ordered to return or lose their jobs.  Even Pope Francis spoke out against the working conditions in the factory:

“A headline that really struck me on the day of the tragedy in Bangladesh was ‘Living on 38 euros a month’. That is what the people who died were being paid. This is called slave labour.”

The increase in the amount of clothes people consume also has consequences for the environment. More clothing is shipped and flown from the Far East to Europe than ever before and the life cycle of these garments is decreasing.   National Geographic says that clothing represents 5% of total garbage in landfills [9]– and in North America, that’s about 68 lbs. of waste per household per year.  And if that clothing is made of synthetics, they’ll be around long, long after we’re gone, leaching their chemicals into our groundwater.  So one thing you can do to help the environment is to buy natural fibers.   Here’s a video produced by Icebreaker Merino, which shows what happens to a t-shirt made of Merino wool, after just 6 months:

The sad fact is that fast doesn’t mean free – and the costs are high.


[1] http://www.cam.ac.uk/research/news/well-dressed

[2] http://www.ethicalfashionforum.com/the-issues/fast-fashion-cheap-fashion

[3] http://www.ethicalfashionforum.com/the-issues/fast-fashion-cheap-fashion

[4]http://www.greenpeace.org/international/Global/international/publications/toxics/Water%202012/ToxicThreads01.pdf

[5] http://www.livescience.com/38970-bpa-phthalates-teen-health.html

[6] “Trading Away Our Rights”, Oxfam,  2004; http://www.oxfam.org/sites/www.oxfam.org/files/rights.pdf

[7] http://www.ethicalfashionforum.com/the-issues/fast-fashion-cheap-fashion

[8] http://www.cnn.com/2013/05/20/world/asia/bangladesh-inside-garment-factory

[9] http://www.charterrecycling.com/recycling-facts

What you can do to avoid toxins

O Ecotextiles (and Two Sisters Ecotextiles)

North-Cascades-e1346800825850I’ll be taking a few weeks off so instead of sitting in front of the computer I’ll be hiking in the mountains and sitting by a lake. Have a wonderful fourth, and see you in August.

Last week I promised you the list of things to do to avoid toxins in your life. In putting together the list, it all became a bit overwhelming and I found myself asking whether it would really make a difference. I mean, the chemicals in use are so pervasive and ubiquitous that I wasn’t sure whether my puny attempts at reducing exposure would result in any improvements. Like that old adage: you can’t buy health – can you protect yourself from exposure? I mean, they found GMO wheat in a remote field in Oregon. Then I ran across the Michael Pollan piece in the New York Times (for the full article, click here) in which he talks about what we can do to fight climate change and it seems to reflect my own feelings about chemical exposure:

Why bother? That really is the big question facing us as individuals hoping to do something about climate change, and it’s not an easy one to answer. I don’t know about you, but for me the most upsetting moment in “An Inconvenient Truth” came long after Al Gore scared the hell out of me, constructing an utterly convincing case that the very survival of life on earth as we know it is threatened by climate change. No, the really dark moment came during the closing credits, when we are asked to . . . change our light bulbs. That’s when it got really depressing. The immense disproportion between the magnitude of the problem Gore had described and the puniness of what he was asking us to do about it was enough to sink your heart.

But then he answers his own question: “Going personally green is a bet, nothing more or less, though it’s one we probably all should make, even if the odds of it paying off aren’t great. Sometimes you have to act as if acting will make a difference, even when you can’t prove that it will.”

The fact that chemicals are not being directly linked to health issues is largely because of the long delay between time of exposure and effect, so causation is difficult to prove. As Ed Brown points out in his new documentary “Unacceptable Levels” (click here for more information), it’s only because these chemicals have been in our environment for so long that we can now start to monitor their results. Another reason it’s difficult to prove the effects of these chemicals is that we’re exposed to low levels of individual chemicals from different sources – and they enter your body and react with all the other chemicals found there. Yet chemicals are tested for safety only one by one. As Ken Cook points out, no doctor will prescribe a new drug for a patient before finding out what other drugs that patient is taking.

So, yes, it’s overwhelming but that’s okay. Now that you know, begin to read up a bit and learn what all the fuss is about. Then you can start to make some changes that might mean all the difference.

Back to my list: my top 11 suggestions to avoid toxins are below. If you can do even some of those, you’ll be ahead of the game:

• Take off your shoes in the house – simple and easy, and it prevents lots of pesticides and other chemicals from being tracked in.

• Vacuum and/or dust regularly –because the dust in our homes has been proven to contain lots of chemicals (want proof? click here )

• Filter your water. You’d be surprised to read the list of really bad chemicals found in most tapwater in the US – if you’re interested, read the series called “Toxic Waters” which was published in the New York Times. Click here.

• Buy only GOTS or Oeko Tex certified fabrics if you can – for everything, not just sheets and pajamas – starting now. Never buy wrinkle-free or permanent-press anything and pass on any stain protection treatments. Fabrics – even those made of organic cotton – are, by weight, 27% synthetic chemicals. Click here to get started on what that means!

• Check the labels on your furniture. The California Furniture Flammability Standard essentially requires that cushioned furniture, children’s car seats, diaper-changing tables and other products containing polyurethane foam be drenched in flame retardants – and most manufacturers build to that standard, so don’t think you’re off the hook just because you don’t live in California. (Click here to read why that’s important). Check the labels on electronics, too. Avoid polyurethane if possible.

• Read the labels of your grooming products – avoid anything that includes the words “paraben” (often used as a suffix, as in methylparaben) or “phthalate” (listed as dibutyl and diethylhexyl or just “fragrance”). If there isn’t an ingredients list, log on to cosmeticsdatabase.com, a Web site devised by the Environmental Working Group that identifies the toxic ingredients of thousands of personal-care products.

• About plastics: Never use plastics in the microwave. Avoid “bad plastics” like PVC and anything with “vinyl” in its name. And don’t eat microwave popcorn, because the inside of a microwave popcorn bag is usually coated with a chemical that can migrate into the food when heated. It has been linked to cancer and birth defects in animals.

* As Michael Pollan says: “Eat food. Not too much. Mostly plants.” I’d add: eat organic as much as possible, support local farmers and don’t eat meat and fish every day. Grow an organic garden – one of the most powerful things you can do! If you can only purchase a few organic foods, there are lots of lists (EWG has a good one, click here) that tell you which are the most pesticide-laden.

• Replace cleaning products with non toxic alternatives – either commercially available cleaning products (avoiding ammonia, artificial dyes, detergents, aerosol propellants, sodium hypochlorite, lye, fluorescent brighteners, chlorine or artificial fragrances) or homemade. You probably can do most cleaning with a few simple ingredients like baking soda, lemon juice and distilled white vinegar. Lots of web sites offer recipes for different cleaners – I like essential oils (such as lavender, lemongrass, sweet orange, peppermint, cedar wood and ylang-ylang) in a bucket of soap and hot water. It can clean most floors and surfaces and it won’t kill me.

• And now that we mention it, avoid using any product which lists “fragrance” as an ingredient.

• Fly less – in this case my issue is not with the carbon footprint (which is tremendous) but because the fabrics are so drenched in flame retardants that people who fly often have elevated levels of PBDEs in their blood – and you already know that PBDEs and their ilk are to be avoided as much as possible (click here and here ).

• Get involved and become informed! Force the federal government to fulfill its obligation to protect us from harm – join something (like a Stroller Brigade, sponsored by Safer Chemicals, Healthy Families or Washington Toxics Coalition, for example) and urge your representatives to support the Safe Chemicals Act.

When plastic was introduced in 1869, it was advertised as being able to replace natural products like ivory and tortoiseshell in items such as jewelry, combs and buttons – so it would “no longer be necessary to ransack the earth in pursuit of substances which are constantly growing scarcer.”(1)

What a success: Plastics are versatile – they can be hard or soft, flexible or brittle, and are durable, lightweight, formable – in fact, they’re so versatile that they’ve become a vital manufacturing ingredient for nearly every existing industry. They are practically ubiquitous. And now we’re beginning to find that our relationship with plastic is not healthy. Using dwindling fossil fuels to manufacture the stuff, plastic leaches toxic chemicals into our groundwater, litters landscapes and destroys marine life. As Susan Freinkel points out in her book, Plastic: A Toxic Love Story, it’s worth noting that discoveries of plastic’s toxic effects are being made in a world that is at least ten times more plastic than it was half a century ago. In the ’60s, an American might have used about 30 pounds of plastic a year – in 2011, 300 pounds. And we’re producing 300 million tons more every year.(2)

Plastics were marketed as “the material of the future”. And how true that is, because large polymers take practically forever to break down, so much of the plastic that has ever been manufactured is still with us, in landfills, in the plastic filled gyres found in our oceans (where the mass of plastic exceeds that of plankton sixfold) (3), and the stomachs of northern seabirds. And it will stay there for hundreds if not thousands of years.

Just as some chemicals can impact children’s bodies much more than adult bodies, Judith Shulevitz, writing in the New Republic, reminds us: “plastic totally dominates the world of the child. Children drink formula in baby bottles and water in sippy cups, eat food with plastic spoons on bright melamine trays, chew on bath books and rubber ducks, and, if they don’t do these things at your house, they’ll do them at someone else’s or at school, no matter how many notes you write or mad-housewife-ish you’re willing to appear.” (4)

There are many studies to support the belief that these plastics are changing us – but what has really changed is that the scientific understanding of how these chemicals are poisoning us has undergone a conceptual revolution – our grandchildren may see our current attitudes about living with these chemicals as being analogous to doctors in the 1950s who appeared in ads for cigarettes.

Old toxicological notions are being stood on their heads. Certainly, the old “dose makes the poison” notion, which was first expressed by Paracelsus in the 16th century and which means that a substance can only be toxic if it is present in a high enough concentration in the body – because all things are poisonous in the right amounts. He wrote: “All substances are poisons; there is none which is not a poison. The right dose differentiates a poison from a remedy”. But today scientists are finding that timing of exposure might be the critical factor – a fetus might respond to a chemical at one-hundredfold less concentration or more than in an adult, and when the chemical is taken away the body is altered for life. Another theory is known as the “developmental origins of health and disease,” or DOHaD (for more about DOHaD, click here), and it paints a picture of almost unimaginably impressionable bodies, responsive to biologically active chemicals until the third generation.(5)

New methods have been developed which have taken the guesswork out of what were once theories: for example, biomonitoring now means that scientists can actually discover the degree to which people have been exposed to poisonous stuff when in the past their conclusions were largely guesswork; and microarray profiling, which means we’re beginning to understand how tiny doses of certain chemicals switch genes on or off in harmful ways during exquisitely sensitive periods of development.

Exposure to all that plastic has a cumulative effect. Now toxicologists can see that lots of tiny doses from many different estrogen-mimicking chemicals entering the body by multiple pathways can have a big impact. “If you’re being exposed to two-hundred fifty chemicals and only thirty of them have estrogenic activity, but they’re each very low, still, thirty of them might add up to be significant,” says Jerrold Heindel, of the National Institute of Environmental Health Sciences (NIEHS).

Judith Shulavith asks– if we live in this plastic environment – why we’re not sicker than we are? And sicker than we used to be? “The answer is, we’re healthier in some ways and sicker in others. Medical advances mean we’re likelier than ever to survive our illnesses, but all kinds of diseases are on the rise. Childhood cancers are up 20 percent since 1975. Rates of kidney, thyroid, liver, and testicular cancers in adults have been steadily increasing. A woman’s risk of getting breast cancer has gone from one in ten in 1973 to one in eight today. Asthma rates doubled between 1980 and 1995, and have stayed level since. Autism-spectrum disorders have arguably increased tenfold over the past 15 years. According to one large study of men in Boston, testosterone levels are down to a degree that can’t be accounted for by factors such as age, smoking, and obesity. Obesity, of course, has been elevated to the status of an epidemic.”(6)

There are many ways to explain upticks in rates of any particular ailment; for starters, a better-informed populace and better tools for detecting disease mean more diagnoses. Other environmental stressors include Americans’ weirdly terrible eating habits, our sedentary lifestyle, and stress itself. But why can’t we just figure this out and come to some conclusions about certain chemicals as the cause of certain diseases? John Vandenberg, a biologist, explains the difficulty : “Well, one of the problems is that we would have to take half of the kids in the kindergarten and give them BPA and the other half not. Or expose half of the pregnant women to BPA in the doctor’s office and the other half not. And then we have to wait thirty to fifty years to see what effects this has on their development, and whether they get more prostate cancer or breast cancer. You have to wait at least until puberty to see if there is an effect on sexual maturation. Ethically, you are not going to go and feed people something if you think it harmful, and, second, you have this incredible time span to deal with.”(7)

Which diseases, exactly, have fetal origins and which chemicals have the power to sidetrack development, and how, is the goal of a giant, 21-year study of 100,000 children called the National Children’s Study (NCS), under the auspices of the National Institutes of Health. However, in 2013, it was announced that the decade-old effort would undergo radical restructuring to cut costs.(8)

Meanwhile, what can you do to protect yourself and your family, since the government isn’t doing that job?  I’ll have some ideas next week.

(1) Freinkel, Susan, “Plastic: Too Good to Throw Away”, The New York Times, March 17, 2011
(2) Ibid.
(3) Moore, C.J., et al, “Density of Plastic Particles found in zooplankton trawls from coastal waters of Northern California to the North Pacific Central Gyre”, Algalita Marine Research Foundation
(4) Shulevitz, Judith, “The Toxicity Panic”, The New Republic, April 7, 2011
(5) Ibid.
(6) Ibid.
(7) Groopman, Jerome, “The Plastic Panic”, The New Yorker, May 31, 2010.
(8) Belli, Brita, “Changes to Children’s Study Threaten its value, experts say”, Simons Foundation Autism Research Initiative; 7 March 2013

You are what you wear.

O Ecotextiles (and Two Sisters Ecotextiles)

In Memoriam: U.S. Senator Frank R. Lautenberg (D – NJ).

Sen. Lautenberg fought valiantly to reform the weak laws protecting consumers in the US from chemical incursions in their lives. He introduced the “Safe Chemicals Act of 2010”, which was defeated, but followed up with the “Chemical Safety Improvement Act” which has been endorsed by the New York Times, the Washington Post and has bipartisan support at this time. It caps eight years of work by Senator Lautenberg to fix the nation’s broken chemical law (the TSCA) which has been proven ineffective and is criticized by both the public health community and industry. Thank you Senator Lautenberg.
******************************************************************************
You are what you wear.

I don’t mean like in “the clothes make the man” kind of way, but in the “our bodies absorb chemicals found in our environment” kind of way.

The new science of biomonitoring has enabled scientists to take the guesswork out of the effects of toxic exposure in blood, urine, breast milk, semen and all the other parts of us where chemicals tend not to flush out. It has brought home the truth in the saying that we are what we wear – or eat, sit on, breathe, rub up against or drink. The “environment” is not “out there” as David Suzuki reminds us: We are the environment and it is us.

Since 1999, the Centers for Disease Control (CDC) has tested Americans every two years in order to build a database of what are called “body burdens,”(1) in order to help toxicologists set new standards for exposure and definitively link chemicals to illness, or else decouple them. The study attempts to assess exposure to environmental chemicals in the general U.S. population – and the more chemicals they look for, the more they find: The CDC started with 27 worrisome chemicals in 1999 and now tests for 219. Their findings have shown that no matter whether you’re rich or poor; live in the center of a city or a pristine rural community; east coast, west coast or in between; are elderly or newborn; Republican, Democrat or Socialist – you have BPA in your blood, as well as polybrominated diphenylethers (PBDE)s – which can retard a fetus’s neurological development; perfluorooctanoic acid (PFOA) – which impairs normal development; perchlorate – which can keep the thyroid from making necessary hormones and methyl tert-butyl ethers (now banned in most states) and mercury.

And the correlation between chemicals to illness seems to be on the rise(2) – certainly from studies done linking various chemicals to human disease and illness, but also because the spectrum of both “rare” and “common” illnesses is on the rise. The National Institutes of Health defines a rare disease as one affecting 200,000 or fewer Americans. Yet 25 – 30 million Americans suffer from one of the nearly 6,800 identifiable rare diseases. That compares to the 40 million Americans with one of the three “major” diseases: heart disease, cancer or diabetes.

Specifically with regard to fabrics: over 2,000 chemicals are used in textile processing, and these include some of the most toxic known (lead, mercury, arsenic, formaldehyde, Bisphenol A, PBDE, PFOA). There are no requirements that manufacturers disclose the chemicals used in processing – chemicals which remain in the finished fabrics. Often the chemicals are used under trade names, or are protected by legislation as “trade secrets” in food and drug articles – but fabrics don’t even have a federal code to define what can/cannot be used because fabrics are totally unregulated in the U.S., except in terms of fire retardancy or intended use. It’s pretty much a free-for-all.

What they’re finding is that this chemical onslaught seems to be changing us. Using a computer-assisted technique called microarray profiling, scientists can now examine the effects of toxins on thousands of genes at once (before they could only study 100 at a time at most). They can also search for signs of chemical subversion at the molecular level, in genes and proteins. This means that we are beginning to understand how even small doses of certain chemicals may switch genes on and off in harmful ways during the most sensitive period of development.

In a talk at the National Academy of Sciences, Linda Birnbaum, the head of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program, called toxicogenomics (the study of how genes respond to toxins) the “breakthrough” that pushed the study of poisons beyond the “obvious things,” that is, the huge doses that led to “death or low birth weight.”(3) Scientists are developing new ideas about how chemicals can, in effect, re-program animals and humans to be more susceptible to certain diseases—and to pass that susceptibility on to their offspring. This theory is known as the “developmental origins of health and disease” (DOHad) , and is now an emerging field.

So why not seek products – fabrics, soaps, cosmetics, perfumes, deodorants, food – that don’t contain chemicals that harm you – or your children or grandchildren?
**************************************************************************

(1) What is a “body burden”: Starting before birth, children are exposed to chemicals that impair normal growth and development. Exposures continue throughout our lives and accumulate in our bodies. These chemicals can interact within the body and cause illness. And they get passed on from parent to child for generations.
(2) World Health Organization; http://www.who.int/healthinfo/global_burden_disease/en/index.html
(3) Shulevitz, Judith, “The Toxicity Panic”, The New Republic, April 28, 2011

I ran into some interesting ideas that seem to display why we should not immediately discredit new science – like genetic engineering or nanotechnology – because it might well provide clues to how we can continue to live on this planet.  So rather than taking a global stand against GMOs or nanotechnology perhaps we should look at how the science is used.

Carbon dioxide (CO2)  – the natural gas that allows sunlight to reach the Earth –  also prevents some of the sun’s heat from radiating back into space, thus trapping heat and warming the planet. Scientists call this warming the greenhouse effect. When t­his effect occurs naturally, it warms the Earth enough to sustain life. In fact, if we had no greenhouse effect, our planet would be an average temperature of minus 22 degrees Fahrenheit (minus 30 degrees Celsius)[1].  My kids would love the skiing, but they’d be too dead to enjoy it.  So carbon dioxide and the greenhouse effect are necessary for Earth to survive. But human inventions like power plants and cars, which burn fossil fuels, release extra CO2 into the air. Because we’ve added (and continue to add) this carbon dioxide to the atmosphere, more heat is stored on Earth, which causes the temperature of the planet to slowly rise, a phenomenon called global warming.

Carbon dioxide isn’t the only greenhouse gas (GHG) – others include water vapor, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons and sulfur hexafluoride – but it’s the most important.  And it’s going up as a direct result of human activity.[2]  Just recently, we passed a milestone that climate scientists have warned is impressively scary – for the first time in human history, atmospheric carbon dioxide levels will surpass 400 ppm.[3]

So what to do? Traditionally, we’ve relied on natural systems to deal with this extra CO2 – like trees and other plants which soak up the stuff through photosynthesis.  But the amounts being generated exceed the capacity of natural systems to deal with it.  So we look to technological solutions, which basically consist of:  capture (i.e., trapping the gas at its emission source and then putting it someplace where it won’t escape) and geologic sequestration or storage (putting it someplace where it won’t escape.)  But I’m not a believer in these measures – after all, captured CO2 must be transported (by rail, truck or ship) to its final storage place.  And where is there a storage place that will not leak and can accommodate the 30 billion metric tons of CO2 we generate every year – without dire environmental consequences.

We have to look outside the box.  There have been many such ideas, from the more outlandish (i.e., create man-made volcanoes to pump sulfur dioxide into the atmosphere to block sunlight and cool the planet[4]) to several I’ve outlined below that just might help.  But they depend  on the use of GMO and nano science.

As Technology.org describes it:  “It is not widely appreciated that the most substantial process of carbon sequestration on the planet is accomplished by myriad marine organisms making their exoskeletons, or shells.   Shells are produced biologically from calcium and magnesium ions in sea water and carbon dioxide from the air, as it is absorbed by sea water. When the organisms die, their shells disintegrate and form carbonate sediments, such as limestone, which are permanent, safe carbon sinks.”[5]

from ecoco: sustainable design

from ecoco: sustainable design

By studying how sea urchins grow their own shells, scientists at Newcastle University in the UK have discovered a way to trap CO2 in solid calcium carbonate using nickle nanoparticles.  “It is a simple system,” said Dr Lidija Siller from Newcastle University. “You bubble CO2 through the water in which you have nickel nanoparticles and you are trapping much more carbon than you would normally—and then you can easily turn it into calcium carbonate.”[6]  Most carbon capture and storage programs must first trap the CO2 and then pump it into holes deep under ground, which is both expensive and has a high environmental risk.    Lead author, PhD student Gaurav Bhaduri, is quoted: “ [the nickel catalyst]  is very cheap, a thousand times cheaper than carbon anhydrase”.  The two researchers have patented the process and are looking for investors.

Meanwhile, MIT professor Angela Belcher, who had done her thesis on the abalone,   and graduate students Roberto Barbero and Elizabeth Wood are also looking into this.  They have  created a process that can convert carbon dioxide into carbonates that could be used as building materials. Their process, which has been tested in the lab, can produce about two pounds of carbonate for every pound of carbon dioxide captured.

Their process requires using genetically modified yeast.

Yeast don’t normally do any of those reactions on their own, so Belcher and her students had to engineer them to express genes found in organisms such as the abalone. Those genes code for enzymes and other proteins that help move carbon dioxide through the mineralization process.

The MIT team’s biological system captures carbon dioxide at a higher rate than other systems being investigated. Another advantage of the biological system is that it requires no heating or cooling, and no toxic chemicals.

Dr. Belcher has also used genetically modified viruses so they would have a binding affinity with carbon nanotubes – which allowed them to build a high-powered lithium ion battery cathode that could power a green LED.  Dr. Belcher thinks that she might one day drive a virus-powered car.

I think these two examples demonstrate that we should always keep an open mind.  And remember that it’s not always the science that’s causing a problem, but rather how we use it.  The idea that GMO seeds are intellectual property (owned largely by Monsanto) for example, is one of the wrong ways to use this technology.  But let’s not throw the baby out with the bath water.


[3] Scheutze, Christopher, “With Carbon Dioxide Approaching a New High, Scientists Sound the Alarm, New York Times, May 6, 2013; http://rendezvous.blogs.nytimes.com/2013/05/06/with-carbon-dioxide-approaching-a-new-high-scientists-sound-the-alarm/

[4] From SuperFreakonomics by Steven D. Levitt and Stephen J. Dubner.

Bees and the web of life

O Ecotextiles (and Two Sisters Ecotextiles)

beesI’m happily planning what will be my new organic kitchen garden, and I keep thinking about agriculture and how it relates to Fritjof Capra’s statement that we are all part of a vast interconnected universe – one that is constantly in flux. And I also keep returning to the subject of how agriculture, as practiced in the “developed” world, impacts us.

Across the United States and around the world, honey bee populations are mysteriously vanishing. Honey bee colony losses are not uncommon, however, the sort of disappearance I’m talking about is unprecedented: This honey bee colony loss (called colony-collapse disorder, CCD) is due to uncharacteristic bee behavior: bees are failing to return to the hive. And we don’t know why.

Given how important honeybees are to the food that we eat — bees help pollinate crops that are worth more than $200 billion a year — the fact that they are dying in large numbers, and we can’t say why, is very, very worrying. And it’s not just honey bees that are dying: according to a study written by a team of scientists including entomologist Sydney Cameron of the University of Illinois, the relative abundance of four species of bumble bees over the past few decades has dropped by more than 90%—and those disappearing species are also suffering from low genetic diversity, which makes them that much more susceptible to disease or environmental pressures.

CCD was first reported in 2006, when commercial beekeepers began noticing that their adult worker honeybees would suddenly flee the hive, ending up dead somewhere else. This led to the rapid loss of the colony. During normal years, commercial beekeepers expect to lose 10% to 15% of their colony, but over the past five years, mortality rates for commercial operations in the U.S. have ranged from 28% to 33%. This could be disastrous for our food supply: according to a study released by the United States Department of Agriculture in May, 2013, “the consequences for the agricultural economy — and even for our ability to feed ourselves — could be dire.”(1)

How is this of such concern? In California, the almond crop (as one example) is so large and intensively grown these days that it has greatly surpassed the region’s inherent ability to supply pollinators. Decades ago, when there were fewer almonds, farmers could rely on pollination just from the beekeepers who lived in the Central Valley. Now, they have to import migrant apian labor.

And now, bees are big business: Scientific AG, a firm based in Bakersfield, California, helps broker pollination deals between local almond growers and apiarists from across America. Joe Traynor, the pollination broker who founded Scientific AG, says that in the 1960s there were 100,000 acres (40,000 hectares) of groves. Today, groves cover 700,000 acres and the industry claims it supplies 80% of the world’s almonds. In order to meet this pollination demand, more than a third of America’s beehives must be moved to California for the season. Such changes to the industry have been reflected in the prices for bee hives. In 1995 growers could rent a hive for $35. Today, says Mr Traynor, a strong colony would cost $150-200. Beekeepers truck their hives cross country to pollinate almond groves in California, field crops and forages in the Midwest, apples and blueberries in the Northeast and citrus in Florida.

But now the bees are dying and nobody has pinned down the precise cause for CCD.

A lot of things can kill a hive, but nothing has devastated beekeeping in America in the last half century more than the accidental introduction of Varroa destructor in the mid-1980s. A tiny parasitic mite, varroa reproduces fast, and mite populations can and do overwhelm colonies and kill them outright. Varroa is credited with wiping out the wild bee population in North America. Breeding a varroa-resistant bee is the holy grail of American beekeepers. And often varroa mites are cited as a cause of CCD, but varroa mites were present in North America 20 years before CCD.

Other types of fungus (such as Nosema ceranae, a parasitic fungus from Asia which impacts a bee’s ability to process food) have been mentioned. But there is almost certainly a further factor causing stress on the bees—a poor diet.

It is increasingly being recognized that managed bees need food supplements. In some places, a decline in the area of pasture land on which they can forage, the loss of weedy borders and the growth of crop monocultures mean it is hard for bees to find a wide enough range of pollen sources to obtain all their essential amino acids. In extreme cases they may not even find enough basic protein. Writing in Bee Culture, February 2009, Mr Traynor observes that places where crops with low-protein pollens are grown (such as blueberries and sunflowers) are also places where CCD has appeared.

The suggestion is that poor nutrition has weakened the bees’ immune systems, making them more vulnerable to viruses and other parasites. Feeding bees supplements, rather than relying on their ability to forage in the wild, costs time and money. Many beekeepers therefore try to avoid it. Anecdote suggests, however, that those who do fork out find their colonies are far more resistant to CCD.

New research suggests yet another potential contributor to CCD. The problem? We’ve been stealing the bees’ honey, which aids the bee’s “immune systems”—detoxification enzymes used to rid the body of foreign chemicals, like pesticides – and instead feeding them high fructose corn syrup. Commercial beekeepers feed bees high fructose corn syrup instead of honey for the same reason that commercial food manufacturers feed it to us: it’s cheaper.(2)

And of course, there are pesticides. Systemic pesticides like imidacloprid and clothianidin, so-called “neonics,” are persistent in soils for as long as two years, are water-soluble so they can travel far from their original application, and they’re taken up by plants’ roots and circulated throughout, so leaves, nectar, pollen, fruit – indeed, all of the plant is contaminated. The European Union recently instituted a two year ban on neonics. Research at Washington State University has found that pesticides embedded in old honeycombs is a major contributors to CCD.(3) They found traces of insecticides, herbicides, miticides and fungicides in honeycombs and bees raised in those hives had “significantly reduced longevity”.

Even more far-fetched concerns for CCD include cellphones and GMO crops.

But here’s the thing: Australia is one of the few nations in the world to have remained free of varroa mite (so far). And Australia – which has cellphones and towers, migratory and commercial beekeeping, neonic pesticides in agriculture, high fructose corn syrup for supplemental feeding, and environmental factors like drought and urbanization and all the rest – has had zero incidents of colony collapse disorder.
So, going back to Fritjof Capra and his insistence that the “web of life” is made up of a series of interconnected things, could it not be because of all of the above? Bees are stressed by loss of habitat, infection from fungus and mites, pesticides and poor nutrition – perhaps they’re just reaching the tipping point?

(1) http://science.time.com/2013/05/07/beepocalypse-redux-honey-bees-are-still-dying-and-we-still-dont-know-why/
(2) http://arstechnica.com/science/2013/05/feeding-bees-corn-syrup-may-leave-them-vulnerable-to-colony-collapse/
(3) http://researchnews.wsu.edu/environment/248.html